338 research outputs found

    FPTAS for Counting Monotone CNF

    Full text link
    A monotone CNF formula is a Boolean formula in conjunctive normal form where each variable appears positively. We design a deterministic fully polynomial-time approximation scheme (FPTAS) for counting the number of satisfying assignments for a given monotone CNF formula when each variable appears in at most 55 clauses. Equivalently, this is also an FPTAS for counting set covers where each set contains at most 55 elements. If we allow variables to appear in a maximum of 66 clauses (or sets to contain 66 elements), it is NP-hard to approximate it. Thus, this gives a complete understanding of the approximability of counting for monotone CNF formulas. It is also an important step towards a complete characterization of the approximability for all bounded degree Boolean #CSP problems. In addition, we study the hypergraph matching problem, which arises naturally towards a complete classification of bounded degree Boolean #CSP problems, and show an FPTAS for counting 3D matchings of hypergraphs with maximum degree 44. Our main technique is correlation decay, a powerful tool to design deterministic FPTAS for counting problems defined by local constraints among a number of variables. All previous uses of this design technique fall into two categories: each constraint involves at most two variables, such as independent set, coloring, and spin systems in general; or each variable appears in at most two constraints, such as matching, edge cover, and holant problem in general. The CNF problems studied here have more complicated structures than these problems and require new design and proof techniques. As it turns out, the technique we developed for the CNF problem also works for the hypergraph matching problem. We believe that it may also find applications in other CSP or more general counting problems.Comment: 24 pages, 2 figures. version 1=>2: minor edits, highlighted the picture of set cover/packing, and an implication of our previous result in 3D matchin

    A Simple FPTAS for Counting Edge Covers

    Full text link
    An edge cover of a graph is a set of edges such that every vertex has at least an adjacent edge in it. Previously, approximation algorithm for counting edge covers is only known for 3 regular graphs and it is randomized. We design a very simple deterministic fully polynomial-time approximation scheme (FPTAS) for counting the number of edge covers for any graph. Our main technique is correlation decay, which is a powerful tool to design FPTAS for counting problems. In order to get FPTAS for general graphs without degree bound, we make use of a stronger notion called computationally efficient correlation decay, which is introduced in [Li, Lu, Yin SODA 2012].Comment: To appear in SODA 201

    The Ising Partition Function: Zeros and Deterministic Approximation

    Full text link
    We study the problem of approximating the partition function of the ferromagnetic Ising model in graphs and hypergraphs. Our first result is a deterministic approximation scheme (an FPTAS) for the partition function in bounded degree graphs that is valid over the entire range of parameters β\beta (the interaction) and λ\lambda (the external field), except for the case ∣λ∣=1\vert{\lambda}\vert=1 (the "zero-field" case). A randomized algorithm (FPRAS) for all graphs, and all β,λ\beta,\lambda, has long been known. Unlike most other deterministic approximation algorithms for problems in statistical physics and counting, our algorithm does not rely on the "decay of correlations" property. Rather, we exploit and extend machinery developed recently by Barvinok, and Patel and Regts, based on the location of the complex zeros of the partition function, which can be seen as an algorithmic realization of the classical Lee-Yang approach to phase transitions. Our approach extends to the more general setting of the Ising model on hypergraphs of bounded degree and edge size, where no previous algorithms (even randomized) were known for a wide range of parameters. In order to achieve this extension, we establish a tight version of the Lee-Yang theorem for the Ising model on hypergraphs, improving a classical result of Suzuki and Fisher.Comment: clarified presentation of combinatorial arguments, added new results on optimality of univariate Lee-Yang theorem

    FPTAS for #BIS with Degree Bounds on One Side

    Full text link
    Counting the number of independent sets for a bipartite graph (#BIS) plays a crucial role in the study of approximate counting. It has been conjectured that there is no fully polynomial-time (randomized) approximation scheme (FPTAS/FPRAS) for #BIS, and it was proved that the problem for instances with a maximum degree of 66 is already as hard as the general problem. In this paper, we obtain a surprising tractability result for a family of #BIS instances. We design a very simple deterministic fully polynomial-time approximation scheme (FPTAS) for #BIS when the maximum degree for one side is no larger than 55. There is no restriction for the degrees on the other side, which do not even have to be bounded by a constant. Previously, FPTAS was only known for instances with a maximum degree of 55 for both sides.Comment: 15 pages, to appear in STOC 2015; Improved presentations from previous version

    Correlation decay and partition function zeros: Algorithms and phase transitions

    Full text link
    We explore connections between the phenomenon of correlation decay and the location of Lee-Yang and Fisher zeros for various spin systems. In particular we show that, in many instances, proofs showing that weak spatial mixing on the Bethe lattice (infinite Δ\Delta-regular tree) implies strong spatial mixing on all graphs of maximum degree Δ\Delta can be lifted to the complex plane, establishing the absence of zeros of the associated partition function in a complex neighborhood of the region in parameter space corresponding to strong spatial mixing. This allows us to give unified proofs of several recent results of this kind, including the resolution by Peters and Regts of the Sokal conjecture for the partition function of the hard core lattice gas. It also allows us to prove new results on the location of Lee-Yang zeros of the anti-ferromagnetic Ising model. We show further that our methods extend to the case when weak spatial mixing on the Bethe lattice is not known to be equivalent to strong spatial mixing on all graphs. In particular, we show that results on strong spatial mixing in the anti-ferromagnetic Potts model can be lifted to the complex plane to give new zero-freeness results for the associated partition function. This extension allows us to give the first deterministic FPTAS for counting the number of qq-colorings of a graph of maximum degree Δ\Delta provided only that q≥2Δq\ge 2\Delta. This matches the natural bound for randomized algorithms obtained by a straightforward application of Markov chain Monte Carlo. We also give an improved version of this result for triangle-free graphs

    Zeros of ferromagnetic 2-spin systems

    Get PDF
    We study zeros of the partition functions of ferromagnetic 2-state spin systems in terms of the external field, and obtain new zero-free regions of these systems via a refinement of Asano's and Ruelle's contraction method. The strength of our results is that they do not depend on the maximum degree of the underlying graph. Via Barvinok's method, we also obtain new efficient and deterministic approximate counting algorithms. In certain regimes, our algorithm outperforms all other methods such as Markov chain Monte Carlo and correlation decay

    Fisher Zeros and Correlation Decay in the Ising Model

    Get PDF
    The Ising model originated in statistical physics as a means of studying phase transitions in magnets, and has been the object of intensive study for almost a century. Combinatorially, it can be viewed as a natural distribution over cuts in a graph, and it has also been widely studied in computer science, especially in the context of approximate counting and sampling. In this paper, we study the complex zeros of the partition function of the Ising model, viewed as a polynomial in the "interaction parameter"; these are known as Fisher zeros in light of their introduction by Fisher in 1965. While the zeros of the partition function as a polynomial in the "field" parameter have been extensively studied since the classical work of Lee and Yang, comparatively little is known about Fisher zeros. Our main result shows that the zero-field Ising model has no Fisher zeros in a complex neighborhood of the entire region of parameters where the model exhibits correlation decay. In addition to shedding light on Fisher zeros themselves, this result also establishes a formal connection between two distinct notions of phase transition for the Ising model: the absence of complex zeros (analyticity of the free energy, or the logarithm of the partition function) and decay of correlations with distance. We also discuss the consequences of our result for efficient deterministic approximation of the partition function. Our proof relies heavily on algorithmic techniques, notably Weitz\u27s self-avoiding walk tree, and as such belongs to a growing body of work that uses algorithmic methods to resolve classical questions in statistical physics

    Virtual variable sampling discrete fourier transform based selective odd-order harmonic repetitive control of DC/AC converters

    Get PDF
    This paper proposes a frequency adaptive discrete Fourier transform (DFT) based repetitive control (RC) scheme for DC/AC converters. By generating infinite magnitude on the interested harmonics, the DFT-based RC offers a selective harmonic scheme to eliminate waveform distortion. The traditional DFT-based selective harmonic RC, however, is sensitive to frequency fluctuation since even very small frequency fluctuation leads to a severe magnitude decrease. To address the problem, virtual variable sampling method, which creates an adjustable virtual delay unit to closely approximate a variable sampling delay, is proposed to enable the DFT-based selective harmonic RC to be frequency adaptive. Moreover, a selective odd-order harmonic DFT filter is developed to deal with the dominant odd order harmonic. Because it halves the number of sampling delays in the DFT filter, the system transient response gets nearly 50% improvement. A comprehensive series of experiments of the proposed VVS DFT-based selective odd-order harmonic RC controlled programmable AC power source under frequency variations are presented to verify the effectiveness of the proposed method
    • …
    corecore